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We present a simple explanation of how to use the compound matrix method to solve 
difficult linear inhomogeneous two-point boundary-value problems and we discuss in 
detail the solution of two standard problems. We also give numerical results for an Orr- 
Sommerfeld problem which illustrate the efficacy of the compound matrix method compared 
to orthonormalization. 

I. INTRODUCTION 

In this paper we are concerned with the numerical solution of linear inhomogeneous 
two-point boundary-value problems for systems of ordinary differential equations by 
the use of explicit shooting methods. We shall restrict our attention to “difficult” 
problems, by which we mean “stiff” differential systems for which the real parts of 
the characteristic values of the differential operator will be widely separated. In a 
fundamental paper Conte [I] has clearly explained the pitfalls which may be encoun- 
tered if one attempts to solve such a difficult problem by using the standard (super- 
position) shooting method, and there is a considerable literature devoted to devising 
other shooting methods which obviate these pitfalls. Perhaps the most popular of 
these other methods is that of orthonormalization due to Godunov [5], a concise 
account of which is given in Conte’s paper. Another method which has recently 
received a great deal of attention is the Riccati method, see for example Scott [9]. 
Both the orthonormalization method and the Riccati method do however have their 
disadvantages, with orthonormalization it is a laborious accounting feat to construct 
the required function, and the differential equations of the Riccati method have 
annoying singularities. 

More than twelve years ago Gilbert and Backus [4] advocated the use of compound 
matrices for solving difficult linear eigenvalue problems but until very recently their 
paper seems to have been completely overlooked by both numerical analysts and 
other applied mathematicians. It now transpires that their method is both very 
important and mathematically interesting as evidenced by Ng and Reid [6] who 
recently rediscovered and used the method to solve some difficult eigenvalue problems. 
See also [3] for an explanation as to why the method is so successful. 

Tn Section 2 of this paper we explain how to use the compound matrix method to 
solve difficult linear inhomogeneous two-point boundary-value problems. We do 
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this by presenting full details of the method for solving the general fourth-order 
differential equation, and, where appropriate, we indicate in the text how to proceed 
for any other specific problem. We also give two numerical examples of standard 
fourth-order problems. Then, in Section 3, we present a numerical comparison of the 
solution of the Orr-Sommerfeld equation for plane Poiseuille flow at high Reynolds 
numbers using the compound matrix method and using orthonormalization. 

2. THE COMPOUND MATRIX METHOD FOR INHOMOGENEOUS PROBLEMS 

The general linear inhomogeneous problem may be expressed in the form 
4’ = A+ + r, where 4, r are n-vectors and A is an n x n matrix. We suppose that 
the boundary conditions are separated so that q boundary conditions are known at 
one end of the range of integration and p at the other end; p + q = n. Let q 3 p 
then we will call the q conditions the initial conditions so that there will be p unknown 
initial conditions, and the integration will be from the q end to the p end. For this 
problem 4 can always be suitably redefined by a non-singular transformation so that 
the initial conditions on 4 simply become that the first q components of 4 are specified. 

Instead of presenting the general theory, for the sake of clarity we discuss in detail 
a case with n = 4 and p = 2, but in the text which follows we retain the use of n, p 
rather than 4, 2 so that the reader will know what to do for any other problem. 
(The general theory for the homogeneous problem may be gleaned by reading 
Ng and Reid [6] in conjunction with Schwarz [S].) 

In order to solve a linear inhomogeneous problem most methods obtain the solution 
by forming an appropriate combination of the solutions of the associated homo- 
geneous problem with a particular integral and the compound matrix method is no 
exception to this general rule. Since we shall need to discuss therefore the associated 
homogeneous problem we follow the notation used by Ng and Reid [6] and like them 
we illustrate the ideas involved by considering a simple, but sufficiently general, 
example of the fourth-order two-point boundary-value problem 

where a ’ denotes differentiation with respect to the independent variable x and a,, as, 
a3 , a4 and r are known functions of x. Although the boundary conditions and the 
range of integration may be quite general, to be definite we suppose that the initial 
conditions are 4 = /3, 4’ = y when x = 0 and that the range of integration is 
0 < x < 1. There will also be two boundary conditions at x = 1 but we do not need 
to specify these until later. By the associated homogeneous problem to (1) we shall 
mean Lc$ = 0 with 4 = #’ = 0,when x = 0. 

Firstly, let c&, (bZ be any two linearly independent solutions of the associated 
homogeneous problem L$ = 0 which satisfy the initial conditions C$ = 4’ = 0 at 
x = 0 and consider the n x p solution matrix 
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(2) 

The p x p minors of @ are, in lexical order, 

and since they are the Plucker coordinates of the line joining (& , r& , &, $;)r and 
(c$~, &, 4: , 4;)’ in three-dimensional projective space the point y = ( yl, y2, y3, 
y4 , y5 , y,)r lies on the Klein quadric, see [lo], and so 

shy6 - Y2Y5 + y3y4 = O. (4) 

The closed differential system for the components of y may be found by differentiating 
(3) and using the homogeneous form Lc# = 0 of (1) and it is the linear system 

YB = Y3 + Y4 2 

Y; = U3Yl + U2Y2 + QY, + Y5 > 

Yi = Y5 9 

(5) 

Y; = --a4ih + a2y4 + ulY5 + Y6, 

Y; = -"4Y2 - u3y4 + uly6* 

The null initial conditions on & , d2 at x = 0 translate to y, = y2 = y, = y4 = 
y5 = 0 and we may set y6 = 1 because (5) is homogeneous. The numerical solution 
of (5) subject to these conditions may be found by a straightforward Runge-Kutta 
integration, a subdominant solution of this initid value problem is not required. 

Second let # be any particular solution of the inhomogeneous problem (1) which 
satisfies the known initial conditions #(O) = /3, #‘(O) = y. It is important not to 
calculate such a J, directly but to proceed instead by solving, simultaneously with (5), 
the fourth-order differential system for the p + 1 x p + 1 minors of the matrix 
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namely 

(7) 

By differentiating (7) and using Lt,b = I, L+, = Lb2 = 0 and (3) we readily obtain 
the inhomogeneous linear system 

z; = z2 ) 

6 = a2zl + alz2 + z3 + ryl , 

4 = --a3z1 + QlZ3 + zq + qJ2, 

4 = a4z1 + w4 + ry,, 

(8) 

to integrate at the same time as (5). The initial conditions at x = 0 for z, , z2, z, , z, 
may be found from the definitions (7) and they are 

(Zl 9 z2 9 z3 7 Z4Y = a 0, B, YY. (9) 

Having found y1 - y, , z1 - z, by the method described above we may now find 
the required solution I$ of the originally posed problem (1) by reasoning that there 
must exist constants A, ,u such that 

The constants h and p can be eliminated from (10) in (&) different ways and if this is 
done then we obtain 

y1$” - Y24’ + Y44 = z19 

y1p - Y3$’ + Y54 = z2 9 

y& - Y3f + Ys$ = z3 7 

yap - J# + Y,$’ = z4, 

(11) 
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and we must choose one of these (,“,,) equations to determine the required solution 4. 
For a good discussion of which equation to use for eigenvalue problems when 
q = z2 zY= z3 z z, = 0 see Ng and Reid [6], in practice it is simplest to try them all 
in turn for a few test cases and see which gives the most accurate solution near x =: 0 
for a specific problem. 

It is only now that we need the boundary conditions on 4 at x = 1; after y, - yG , 
z1 - zq have been found then one of (11) is integrated backwards from x == 1 to 
x = 0 using the boundary conditions on 4 at x = 1 to start the integration. Usually, 
the first of (1 l), which is only of second order, will be the appropriate equation to use, 
especially if the boundary conditions on 4 at x = 1 are of the form + = 6, +’ = E 
where 6, E are constants. The equations for y, - y 6 , zr - z4 are numerically unstable 
during a backward integration and so their values should be stored during the 
forward integration, or at least every so often. Hence during the backward integration 
if the equations for y1 - y, , z1 - z4 are integrated simultaneously with one of (11) 
then their values can be reset to the stored values when necessary. Note that (11) 
cannot be integrated right up to x = 0 because the coefficients of the highest deri- 
vatives of rj are zero there, in practice however sufficient information about 4 and its 
derivatives at x = 0 may be gleaned from either the boundary conditions on 4 at 
x = 0 or by extrapolation for small values of x. 

The success of the compound matrix method, see [3], lies basically in the fact that 
all the coefficients in (1 l), such as y1 = &+d - &4, for example, are calculated 
directly rather than as a combination of calculated quantities, the evaluation of 
yr - y, , z, - z, is rather like an automatic orthonormalization. To illustrate the 
power of the method we shall now use it to solve two standard examples of difficult 
linear inhomogeneous two-point boundary-value problems. 

As our first example we consider a problem posed by Conte [I], (see Example 2 
on page 316 of his paper), which has the merit that it has a known exact solution. 
The problem is 

4”” - 36014” + 36004 =-= - 1 $- 1800x2, 

with boundary conditions 

9(O) = 1, +‘(o) = 1, 
4(l) = 3/2 + sinh 1, r$‘(l) = 1 + cash 1. 

The exact solution of this problem is 

(12) 

(13) 

(14) 

however the characteristic values of the differential operator in (12) are 6 1 and 160 
and so the posed problem is numerically “stiff” because any numerical solution of (12) 
will contain a component proportional to exp(60x) even if only due to round-off 
errors. Using Runge-Kutta integration and a step-length h = 0.001 with double- 
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TABLE I 
The Errors Given by the Standard Shooting Method and by the Compound Matrix 

Method for Conte’s Problem 

Error x 10’ 
Error x IO’ using compound matrix method 

using standard superposition 
x and II : 0.001 h : 0.001 h = 0.0001 

0.0 0 0.0 o.ooooo 
0.1 4,472 0.4 0.00004 
0.2 9,878 0.8 0.00009 
0.3 15,388 1.2 0.00013 
0.4 22,384 1.5 0.00016 
0.5 567,127 1.7 0.00018 
0.6 2 x lo" 1.8 0.00019 
0.7 9 x 10’0 1.9 0.00020 
0.8 4 x 10'3 1.7 0.00018 
0.9 10'6 1.3 0.00013 
1.0 0 0.0 o.ooooo 

precision (almost 17 decimal places) Fortran on an IBM 370/168 we applied the 
standard (superposition) shooting method to (12)-(14) and, as expected, we obtained 
completely nonsensical results, except for small values of x, as shown in Table I. 

We then used the compound matrix method as described above in (12~(14), the 
relevant equations for yr - ya are 

YB = Y, + Y4 7 

I:; = a,y, + ys , 

J’; = Ys 3 

4’3 = --a,y, + QJ’4 -t y, 1 

vi = --a,y, , 

(16) 

where a2 = 3601 and a4 = -3600. From the homogeneous form of (13) the initial 
conditions at x = 0 are y i = yz = ya = y, = .va = 0, y, = I. The equations for 
zi - z.i are, with r = -I + 1800x2, 

z; = z2 ) 

z; = azzl A z3 -t r)‘l ) 

Zj, = z4 + ry2 . 

z; = Q4z1 + ryl , 

(17) 
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and from (7), (13) the initial conditions are z, = z2 = 0, Z~ = zg = 1 when x = 0. 
To determine 4 we use the first of (11) namely 

Yl4" - Y24' + Y4$ = 21, (18) 

especially since we know 4, 4’ when x = 1 from (14). Incidentally for this particular 
problem notice that (17), (18) do not involve y, , y5 , y, and it just so happens that these 
three quantities can easily be eliminated from (16) to yield 

Y; = Y2 5 

Yi = a2.h + 2Y4 3 (19) 

Y; = -2a,y, + %!y, + I, 

hence reducing the differential order by 2; the initial conditions for (19) when x = 0 
are y1 = y2 = y, = y; = 0. A Runge-Kutta method was again used with h = 0.001 
and the results are shown in Table I, there is a dramatic improvement, the largest 
error now being less than 2.10-‘, and this is reduced to 2.10-l1 when h = 0.0001 as 
also shown in Table I. (Although (18) cannot be integrated quite up to x = 0, 
because yi = 0 there, we show the error at x = 0 in Table I as being zero because 
we know the value of + at x = 0 from (13).) 

For our second example we consider a fundamental inhomogeneous problem taken 
from hydrodynamic stability theory, in brief the calculation of the harmonic function 
of non-linear stability theory at the nose of the neutral stability curve for plane 
Poiseuille flow. The mathematical description of the problem is 

{Dz _ a2 - iaR(l - ~2 - c)}{D2 - d}E - 2iaRE = 0, (20) 
E’ = E” = 0 when x = 0, E=E’=Owhenx=I, (21) 

(~2 - 4g _ 2j&(I - ~2 - c)}{D” - 4012}~$ - 4iaR$ = iolR(E’E” - EE”), 

(22) 
4 = 4” = 0 when x = 0, $=$‘=Owhenx=l. (23) 

In (20)-(23) both D and a ’ denote differentiation with respect to x, 3 =z I .02055 is the 
wavenumber, R = 5772.222 is the Reynolds number, c = 0.26400055 is the wave- 
speed of the disturbance, E is the eigenfunction solution of the Orr-Sommerfeld 
equation (20), and C$ is the required solution of the inhomogeneous equation (22) 
with boundary conditions (23). Thus a necessary preliminary to calculating 4 is first 
to solve the eigenvalue problem (20), (21) and find the eigenvalue c and the eigen- 
function E, this has been done using the compound matrix method by Ng and Reid [6], 
although for different values of OL and R. For the values of 01 and R given above c, 
E cannot be found by the standard shooting method using double-precision Fortran. 

The computer program which we wrote first used the compound matrix method to 
solve the Orr-Sommerfeld problem (20), (21) and it stored the values of c and of E 
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and its derivatives. Second it found y, - ys , z - z, for the inhomogeneous problem 1 
(22), (23) by solving (16), (17) with 

a2 = sa* + 2iorR(l - x2 - c), 
-a4 = 4a2(4cx2 + 2icuR(I - x2 - c)f - 4hR, 

r = hR(E’E” - EE”), 
(24) 

since (22) is of the same form as (12). The boundary conditions (23) when x = 0 
imply that there all of y, - y, , z1 - z, are zero except y, which may be set to 1. 
Third the program then integrated (18) backwards from x = 1 until nearly x = 0, 
using previously stored values of yr - y6, Z, - z, , and hence determined the 
required solution c$, the value of 4 at x = 0 is of course zero from (23). 

Three runs were done with step-lengths h of 0.002, 0.001 and 0.0005 and these 
results were extrapolated to yield the values of 4 shown in Table II. Also the real and 
imaginary .parts of 4 are plotted in Fig. 1 and this should be compared with Fig. 3e 
of Reynolds and Potter [7] who originally solved (22), (23) for very similar values of 
(Y and R. Because of the rather unusual way in which Reynolds and Potter defined 
their Reynolds number there is a scale factor difference of 3/2 between our results and 
theirs but otherwise the two figures are virtually identical. 

TABLE II 

Some of the Values Obtained for the Solution of the Harmonic 
Function Q of Our Second example, Eqs. (20)-(23) 

x 4 

0.0 0 
0.1 0.711-0.107i 
0.2 1.42fX.2173 
0.3 2.147-0.3291 

0.4 2.874-0.4441’ 

0.5 3.586-0.5611 
0.6 4.242-0.6773 

0.7 4.727-0.7651 

0.8 4.7054.9781 

0.9 3.3OGQ.8471’ 

1.0 0 

The results of the two examples discussed above clearly illustrate the effectiveness 
of the compound matrix method. Although both examples have rather special 
differential equations and boundary conditions, as we mentioned earlier in this section 
the method can be used for the general linear inhomogeneous problem with separated 
boundary conditions. 
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FIG. 1. The real and imaginary parts +r, & of the solution for the harmonic function 4 of our 
second example, see equations (20)-(23); apart from the scale factor of 3/2 (see text) it is virtually 
identical to the earlier calculation by Reynolds & Potter [7], see Fig. 3e of their paper. 

3. COMPARISONOFTHECOMPOUND MATRIX METHOD WITH ORTHONORMALIZATION 

The most important advantage of using the compound matrix method for difficult 
problems relative to other shooting methods is that it can be used by someone who 
only needs to know how to use a Runge-Kutta integration routine, all other shooting 
methods for difficult problems require much more knowledge. We do not pretend 
that it is as efficient as other methods, nevertheless we feel that at least WC should 
compare its efficiency with that of orthonormalization. Tn order to make this com- 
parison we now use both methods to calculate the eigenvalue c which corresponds 
to the most unstable mode in the classical linear stability problem of plane Poiseuille 
flow, when the wavenumber 01 = 1 and the Reynolds number R is large. The differen- 
tial equation for this problem is the Orr-Sommerfeld equation (20) with boundary 
conditions (21) and the characteristic values of the differential operator are of order 
&l and *R1j2. To obtain a true comparison between using the compound matrix 
method and using orthonormalization we shall be particularly concerned with 
solutions for very large values of R; for a similar comparison between the Riccati 
method and orthonormalization see [2]. 

Firstly we use the orthonormalization method together with a Runge-Kutta 
routine to integrate (20), (21) from x = 0 to x = 1 and we iterate to the eigenvalue c 
by a Newton-Raphson process, until two successive iterates of c differ by less than 
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some small preassigned error tolerance. This error tolerance is chosen to be so small 
that the value of c obtained depends predominantly upon the number of integration 
steps used rather than on the tolerance requirement. For log R = 6(1)10 we determine 
the least number of integration steps of equal length which we can use to calculate the 
eigenvalue c correct to 4 significant figures. When R is very large this number is of 
order R1j2 since the principal restriction is that the Runge-Kutta routine shall be 
convergent. 

Second we repeat these calculations using the compound matrix method and since 
we are only interested in obtaining the eigenvalue c it suffices to solve (16) with 

and 
a2 = 2 + iR(l - .x3 - c), 

a4 = -1 + iR(1 + x2 + c). 
(25) 

The initial conditions are, from (21) that J+ - y, are all zero except y2 = 1 and c 
must be iterated upon to satisfy the condition that y1 should be zero when x = 1. 

The comparison found between the two methods is shown in Table III which 
contains the eigenvalue c correct to 8 decimal places. The column headed ONIZ 
is approximately the least number of integration steps which may be used to calculate 
c correct to 4 significant figures using orthonormalization. The coulmn headed CMM 
is the corresponding number via the compound matrix method. (For the corresponding 
numbers when the Riccati method is used see Table 1 of [2].) 

TABLE III 
The Number of Integration Steps of Equal Length Required by Orthonormakation and by the 
Compound Matrix Method to Calculate the Eigenvalue c, Correct to Four Significant Figures, 

of the Orr-Sommerfeld Problem (20), (21) for Plane Poiseuille Flow 

logR c ONIZ CMM 

6 0.06659252-0.01398327i 600 2,200 
7 0.03064130-0.007260491’ 1,200 4,200 
8 0.01417134-0.003512391’ 3,700 8,200 
9 0.0065663CuJ.00166002i 12,000 33,000 

10 0.003045084.00077699i 37,000 61,000 

It is evident from Table III that when R1/2 > 1000, so that the characteristic values 
of the differential operator in (20) which are of order &l and rfIR1i2 are very widely 
separated, and hence the problem may be said to be very difficult, then the compound 
matrix method requires approximately between twice and four times as many inte- 
gration steps as orthonormalization; (the Riccati method required approximately 
twice as many integration steps as orthonormalization). Both methods needed virtually 
the same number of iterations, usually three or four when the initial guess for the 
eigenvalue differed by about 0.1% from the exact value. 
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The computing time required by the compound matrix method was found to be 
about twice as long as when using orthonormalization, we mentioned earlier that we 
did not expect the compound matrix method to be as fast as other shooting methods. 
In fact this timing ratio will be even larger for higher-order differential problems 
because for a differential system of order 2n then essentially the orthonormalization 
method only has to integrate 2n2 equations whereas the compound matrix method has 
to integrate (‘z) equations, assuming there are n boundary conditions at each end of 
the range of integration. 

Of course really both methods should have been used with sophisticated variable- 
step integration routines to accommodate the structures of E and of y, - ys . However 
the integral curves associated with the two methods are very similar and so if this were 
done there would be little change in the ratio of the number of integration steps or 
computing times needed by the two methods from those mentioned above. 

4. CONCLUDING REMARKS 

For linear homogeneous eigenvalue problems with separated boundary conditions 
the brilliancy of the compound matrix method is that it transforms difficult (i.e., stiff) 
two-point boundary-value problems which cannot be solved by the standard (super- 
position) shooting method into initial-value problems which can be solved by standard 
shooting because the required solutions will not be subdominant. The essence of the 
method is to determine the multilinear form (or wedge product) of the linearly inde- 
pendent solutions which satisfy the known initial conditions. 

We have explained how to extend the use of the compound matrix method from 
eigenvalue problems to inhomogeneous two-point boundary-value problems. 
Although we have not given a detailed analysis for the general inhomogeneous 
problem the analysis which we have presented for a single fourth-order equation and 
the two examples which we have discussed should be sufficient to enable the reader 
to solve any particular problem in which he may be interested. 

Also we have examined the efficiency of the compound matrix method compared to 
orthonormalization for a standard difficult eigenvalue problem and we found that the 
compound matrix method requires about three times as many integration steps and 
approximately twice as much computing time as orthonormalization. This comparison 
was for a fourth-order problem and for higher differential orders we expect the 
compound matrix method to require comparatively more computing time. However, 
the method has the important advantage that it is so easy to understand and program 
relative to other shooting methods for difficult problems, therefore it is an ideal 
method for use by those who are anxious to spend most of their time doing theoretical 
work and so wish to do their occassional computational work with the minimum of 
inconvenience. 
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